Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Can J Infect Dis Med Microbiol ; 2022: 3505142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046174

RESUMEN

Tuberculosis is a significant cause of morbidity worldwide and is a priority at the provincial and federal levels in Canada. It is known that tuberculosis transmission networks are complex and span many years as well as different jurisdictions and countries. MIRU-VNTR is a universal tuberculosis genotyping method that utilizes a 24-loci pattern and it has shown promise in identifying inter and intrajurisdictional clusters within Canada. MIRU-VNTR data collected over 10 years from the National Reference Centre for Mycobacteriology (NRCM) were analyzed in this study. Some clusters were unique to a single province/territory, while others spanned multiple provinces and/or territories in Canada. The use of a universal laboratory test can enhance contact tracing, provide geographical information on circulating genotypes, and hence, aid in tuberculosis investigation by public health. The housing of all data on one platform, technical ease of the method, easy exchange of data between jurisdictions, and strong collaboration with laboratories and surveillance units at the provincial and federal levels have the potential to identify possible outbreaks in real time.

2.
Microbiology (Reading) ; 158(Pt 9): 2363-2371, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22745266

RESUMEN

Only about half of bacterial species use an asparaginyl-tRNA synthetase (AsnRS) to attach Asn to its cognate tRNA(Asn). Other bacteria, including the human pathogen Moraxella catarrhalis, a causative agent of otitis media, lack a gene encoding AsnRS, and form Asn-tRNA(Asn) by an indirect pathway catalysed by two enzymes: first, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) catalyses the formation of aspartyl-tRNA(Asn) (Asp-tRNA(Asn)); then, a tRNA-dependent amidotransferase (GatCAB) transamidates this 'incorrect' product into Asn-tRNA(Asn). As M. catarrhalis has a Gln-tRNA synthetase, its GatCAB functions as an Asp-tRNA(Asn) amidotransferase. This pathogen rapidly evolved to about 90 % ampicillin resistance worldwide by insertion of a bro-1 ß-lactamase gene within the gatCAB operon. Comparison of the GatCAB subunits from bro-1 ß-lactamase-positive and bro-negative strains showed that the laterally transferred bro-1 gene, inserted into the gatCAB operon, affected the C-terminal sequence of GatA. The identity between the C-terminal sequences of GatA(wt) (residues 479-491) and of GatA(BRO-1) (residues 479-492) was about 36 %, whereas the rest of the GatA sequence was relatively conserved. The characterization of these two distinct GatCABs as well as the hybrid GatCAB containing GatA(1-478)(wt)(479-492)(BRO-1) and truncated GatCAB enzymes of M. catarrhalis showed that the substitution in GatA(wt) of residues 479-492 of GatA(BRO-1) causes increased specificity for glutamine, and decreased specificity for Asp-tRNA(Asn) in the transamidation reaction. We conclude that the bro gene insertion has altered the kinetic parameters of Asp-tRNA(Asn) amidotransferase, and we propose a model for gatA evolution after the insertion of bro-1 at the carboxyl end of gatA.


Asunto(s)
Moraxella catarrhalis/enzimología , Moraxella catarrhalis/genética , Mutagénesis Insercional , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , beta-Lactamasas/genética , Transferencia de Gen Horizontal , Humanos , Cinética , Operón , Resistencia betalactámica
3.
Methods ; 44(2): 139-45, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18241795

RESUMEN

Selenocysteinyl-tRNA(Sec), cysteinyl-tRNA(Cys), glutaminyl-tRNA(Gln), and asparaginyl-tRNA(Asn) in many organisms are formed in an indirect pathway in which a non-cognate amino acid is first attached to the tRNA. This non-cognate amino acid is then converted to the cognate amino acid by a tRNA-dependent modifying enzyme. The in vitro characterization of these modifying enzymes is challenging due to the fact the substrate, aminoacyl-tRNA, is labile and requires a prior enzymatic step to be synthesized. The need to separate product aa-tRNA from unreacted substrate is typically a labor- and time-intensive task; this adds another impediment in the investigation of these enzymes. Here, we review four different approaches for studying these tRNA-dependent amino acid modifications. In addition, we describe in detail a [32P]/nuclease P1 assay for glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) formation which is sensitive, enables monitoring of the aminoacyl state of the tRNA, and is less time consuming than some of the other techniques. This [32P]/nuclease P1 method should be adaptable to studying tRNA-dependent selenocysteine and cysteine synthesis.


Asunto(s)
Aminoácidos/biosíntesis , ARN de Transferencia/metabolismo , Radioisótopos de Carbono , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Redes y Vías Metabólicas , Radioisótopos de Fósforo , ARN de Transferencia Aminoácido-Específico/biosíntesis , Aminoacil-ARN de Transferencia/biosíntesis , ARN de Transferencia de Asparagina/biosíntesis , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/metabolismo
4.
J Enzyme Inhib Med Chem ; 22(1): 77-82, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17373551

RESUMEN

Asparaginyl-tRNA formation in Pseudomonas aeruginosa PAO1 involves a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) which forms Asp-tRNA(Asp) and Asp-tRNA(Asn), and a tRNA-dependent amidotransferase which transamidates the latter into Asn-tRNA(Asn). We report here that the inhibition of this ND-AspRS by L-aspartol adenylate (Asp-ol-AMP), a stable analog of the natural reaction intermediate L-aspartyl adenylate, is biphasic because the aspartylation of the two tRNA substrates of ND-AspRS, tRNA(Asp) and tRNA(Asn), are inhibited with different Ki values (41 microM and 215 microM, respectively). These results reveal that the two tRNA substrates of ND-AspRS interact differently with its active site. Yeast tRNA(Asp) transcripts with some identity elements replaced by those of tRNA(Asn) have their aspartylation inhibited with Ki values different from that for the wild-type transcript. Therefore, aminoacyl adenylate analogs, which are competitive inhibitors of their cognate aminoacyl-tRNA synthetase, can be used to probe rapidly the role of various structural elements in positioning the tRNA acceptor end in the active site.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Inhibidores Enzimáticos/farmacología , ARN de Transferencia de Asparagina/metabolismo , ARN de Transferencia de Aspártico/metabolismo , Adenosina Monofosfato/farmacología , Ácido Aspártico/farmacología , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Conformación de Ácido Nucleico , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Aspártico/química
5.
J Biol Chem ; 282(16): 11866-73, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17329242

RESUMEN

The amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), are formed in many bacteria by a pretranslational tRNA-dependent amidation of the mischarged tRNA species, Glu-tRNA(Gln) or Asp-tRNA(Asn). This conversion is catalyzed by a heterotrimeric amidotransferase GatCAB in the presence of ATP and an amide donor (Gln or Asn). Helicobacter pylori has a single GatCAB enzyme required in vivo for both Gln-tRNA(Gln) and Asn-tRNA(Asn) synthesis. In vitro characterization reveals that the enzyme transamidates Asp-tRNA(Asn) and Glu-tRNA(Gln) with similar efficiency (k(cat)/K(m) of 1368.4 s(-1)/mM and 3059.3 s(-1)/mM respectively). The essential glutaminase activity of the enzyme is a property of the A-subunit, which displays the characteristic amidase signature sequence. Mutations of the GatA catalytic triad residues (Lys(52), Ser(128), Ser(152)) abolished glutaminase activity and consequently the amidotransferase activity with glutamine as the amide donor. However, the latter activity was rescued when the mutant enzymes were presented with ammonium chloride. The presence of Asp-tRNA(Asn) and ATP enhances the glutaminase activity about 22-fold. H. pylori GatCAB uses the amide donor glutamine 129-fold more efficiently than asparagine, suggesting that GatCAB is a glutamine-dependent amidotransferase much like the unrelated asparagine synthetase B. Genomic analysis suggests that most bacteria synthesize asparagine in a glutamine-dependent manner, either by a tRNA-dependent or in a tRNA-independent route. However, all known bacteria that contain asparagine synthetase A form Asn-tRNA(Asn) by direct acylation catalyzed by asparaginyl-tRNA synthetase. Therefore, bacterial amide aminoacyl-tRNA formation is intimately tied to amide amino acid metabolism.


Asunto(s)
Glutamina/química , Helicobacter pylori/metabolismo , Transferasas de Grupos Nitrogenados/fisiología , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Glutamina/química , Amidas/química , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Catálisis , Escherichia coli/metabolismo , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Transferasas de Grupos Nitrogenados/genética , Pseudomonas aeruginosa/metabolismo , ARN de Transferencia/metabolismo , Homología de Secuencia de Aminoácido
6.
J Bacteriol ; 188(1): 269-74, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16352843

RESUMEN

In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.


Asunto(s)
Aspartato-ARNt Ligasa/química , Aspartato-ARNt Ligasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/enzimología , ARN de Transferencia de Asparagina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticodón , Aspartato-ARNt Ligasa/genética , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Pseudomonas aeruginosa/genética , Alineación de Secuencia , Especificidad por Sustrato
7.
Bioorg Med Chem ; 13(1): 69-75, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15582453

RESUMEN

Three nonhydrolyzable aspartyl adenylate analogs have been prepared and tested as inhibitors of E. coli aspartyl-tRNA synthetase. 5'-O-[N-(L-Aspartyl)sulfamoyl]adenosine is a potent competitive inhibitor (K(i) = 15 nM) whereas L-aspartol adenylate is a weaker inhibitor (K(i) = 45 microM) with respect to aspartic acid. The corresponding ketomethylphosphonate (a novel isosteric replacement) is also a strong inhibitor (K(i) = 123 nM).


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/síntesis química , Adenosina Monofosfato/farmacología , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/síntesis química , Ácido Aspártico/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja
8.
J Bacteriol ; 186(3): 767-76, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14729703

RESUMEN

The genomic sequence of Pseudomonas aeruginosa PAO1 was searched for the presence of open reading frames (ORFs) encoding enzymes potentially involved in the formation of Gln-tRNA and of Asn-tRNA. We found ORFs similar to known glutamyl-tRNA synthetases (GluRS), glutaminyl-tRNA synthetases (GlnRS), aspartyl-tRNA synthetases (AspRS), and trimeric tRNA-dependent amidotransferases (AdT) but none similar to known asparaginyl-tRNA synthetases (AsnRS). The absence of AsnRS was confirmed by biochemical tests with crude and fractionated extracts of P. aeruginosa PAO1, with the homologous tRNA as the substrate. The characterization of GluRS, AspRS, and AdT overproduced from their cloned genes in P. aeruginosa and purified to homogeneity revealed that GluRS is discriminating in the sense that it does not glutamylate tRNA(Gln), that AspRS is nondiscriminating, and that its Asp-tRNA(Asn) product is transamidated by AdT. On the other hand, tRNA(Gln) is directly glutaminylated by GlnRS. These results show that P. aeruginosa PAO1 is the first organism known to synthesize Asn-tRNA via the indirect pathway and to synthesize Gln-tRNA via the direct pathway. The essential role of AdT in the formation of Asn-tRNA in P. aeruginosa and the absence of a similar activity in the cytoplasm of eukaryotic cells identifies AdT as a potential target for antibiotics to be designed against this human pathogen. Such novel antibiotics could be active against other multidrug-resistant gram-negative pathogens such as Burkholderia and Neisseria as well as all pathogenic gram-positive bacteria.


Asunto(s)
Pseudomonas aeruginosa/genética , Aminoacil-ARN de Transferencia/biosíntesis , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/fisiología , Aspartato-ARNt Ligasa/fisiología , Clonación Molecular , Escherichia coli/genética , Glutamato-ARNt Ligasa/fisiología , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...